Q.P.	Code:	19ME0305
X.v.	Cours.	1711110505

Q.P. (Code: 19ME0305	RI9	
Reg	No:		
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:	: PUTTUR	
	(AUTONOMOUS)		
	B.Tech II Year II Semester Supplementary Examinations Febru	uary-2022	
	ENGINEERING THERMODYNAMICS		
	(Mechanical Engineering)		
Ti	ne: 3 hours	Max. Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)		
	UNIT-I		
1	a Define the following	L1	6M
	i)Enthalpy ii) Internal Energy		
	b What do you understand by path function and point function?	L2	3M
	c What are the exact and inexact differentials?	L2	3M
	OR		1
2	a List the difference between a closed system and an open system	L4	6M
	b Describe thermodynamic control volume.	L1	6M
	UNIT-II		
3	a A tank containing air is stirred by a paddle wheel. The work input to	the L5	6M
	paddle wheel is 9000 kJ and the heat transferred to the surroundings fr	om	
	the tank is 3000 kJ.Determine : (i) Work done ;		
	(ii) Change in internal energy of the system.		
	b Define first law of thermodynamics. Justify that internal energy i	sa L1	6M
	property of the system.		
	OR		
4	a Define Statements of second law of thermodynamics	L1	6M
	i) Clausius statement ii) Kelvin-plank statement		
	b 10 kg of fluid per minute goes through a reversible steady flow proce	ess. L5	6M
	The properties of fluid at the inlet are : $P1 = 1.5$ bar, $\rho 1 = 26$ kg/r	n3,	
	[CO1] = 110 m/s and u1 = 910 kJ/kg and at the exit are P2 = 5.5 bar, p	2 =	
	5.5 kg/m3, $[CO2] = 190$ m/s and $u2 = 710$ kJ/kg. During the passage,	the	
	fluid rejects 55 kJ/s and rises through 55 metres. Determine :		
	(i) The change in enthalpy (Δh) ;		
	(ii) Work done during the process (W).		
	UNIT-III		
5	a How the partial pressure in gas mixture related to mole fraction?	L4	6M
	b Derive the equation for work done in a reversible adiabatic process.	L1	6M
	OR		
6	a What is a polytropic process?	L1	4M
	b A cylinder contains 0.45 m3 of a gas at 1×105 N/m2 and 80°C. The gas	is is L5	8M
	compressed to a volume of 0.13 m3, the final pressure being $5 \times N/m^2$. Determine : (i) The mass of gas : (ii) The value of index 'n'	for	
	compression :	101	
	(iii) The increase in internal energy of the gas ; (iv) The heat received	d or	
	rejected by the gas during compression.		

Take $\gamma = 1.4$, R = 294.2 J/kg°C

Q.P. Code: 19ME0305

9

UNIT-IV

KIY

7 Develop the expression for air standard efficiency, work done of an Otto L3 12M cycle.

OR

8 a Write a short note on dryness fraction.
 b Find the saturation temperature change in specific volume and entropy during evaporation and latent heat of vaporization of steam at 1Mpa 3800C.

UNIT-V

a Compare Rankine cycle with Carnot cycle.
b What will be the effect of operating conditions on Rankine cycle
L4 6M 6M 6M 6M

OR

10 A steam turbine is fed with steam having an enthalpy of 3100 kJ/kg. It moves L5 12M out of the turbine with an enthalpy of 2100 kJ/kg. Feed heating is done at a pressure of 3.2 bar with steam enthalpy of 2500 kJ/kg. The condensate from a condenser with an enthalpy of 125 kJ/kg enters into the feed heater. The quantity of bled steam is 11200 kg/h. Find the power developed by the turbine. Assume that the water leaving the feed heater is saturated liquid at 3.2 bar and the heater is direct mixing type. Neglect pump work.

*** END ***